Minimally invasive surgery using cameras to observe the internal anatomy is the preferred approach to many surgical procedures. As a result, endoscopic image processing and surgical vision are evolving as techniques needed to facilitate computer assisted interventions (CAI). Algorithms that have been reported for endoscopic images include 3D surface reconstruction, salient feature motion tracking or instrument detection. However, what is missing so far are common datasets for consistent evaluation and benchmarking of algorithms against each other. As an endoscopic vision CAI challenge at MICCAI, our aim is to provide a formal framework for evaluating the current state of the art, gather researchers in the field and provide high quality data with protocols for validating endoscopic vision algorithms.


Sub-challenges 2017

Based on a "Call for Data" four sub-challenges were selected:


Sub-challenges 2015

Based on a "Call for Data" four sub-challenges were selected:



If you have any question regarding to this challenge, please send an email to the following address:


This challenge is endorsed by the International Society for Computer Aided Surgery (ISCAS) and organized by the open source and open data group of ISCAS.